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Mathematical approaches for modified 
quantum calculation 

Nikolay Raychev 

 

Abstract - in this report is proposed a programming technique for presentation of an operation modifier as an operation 
and are examined some of the mathematics around this programming technique. 
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1. INTRODUCTION                                                                
 

 
In this report is examined some alternative constructions 
of qubit operators, which include more than one control 
or target bit, based on a formalized qubit operator.  This 
work is part of the developed from the author formalized 
system for design of algorithmic models for quantum 
circuits, based on phase encoding, decoding and 
parameterization of primitive quantum operators. In 
previous publications of the author [6, 7, 8] were defined 
several sets of operators on the n qubit, which generalize 
certain classical characteristics: identity and logical 
negation. It has been proven that the space is enough to 
capture BQP, the class of tasks, efficiently solvable by 
quantum computations [1, 2]. Moreover, some ways were 
explored in which can be constructed operators as linear 
combinations of elements from those sets. Such 
combinations capture the partial application of an 
operator together with another operator that in a broader 
sense is its logical negation. 
 

2. OPERATIONS AND CIRCUITS AS 
MATRICES  

 
Each operation on a circuit, whether the circuit is 
classical, probabilistic or quantum, can be presented as a 
matrix. 
 
The presentation of operations as matrices facilitates the 
finding of intuitive solutions. In this way easily could be 
achieved the overall effect of a circuit into a single 
operation: Simply the matrices should be multiplied 
together. Also the combination of independent 
operations, which are applied to different lines becomes 
straightforward: the Kronecker's product must be used. 
 
Intuitively the Kronecker's product A⊗ 2TB works by 
superimposing B inside of A, then each tile is scaled by 

the coefficient it was paired with. For example, let's 
assume that must be applied a Hadamard gate H to one 
line and a NOT gate X  to another line, similar to the 
following: 

──H── 
──X── 
 

The overall matrix of the circuit is computed in the 
following way: 

𝐻 =
1
√2

 �1 1
1 −1�   

𝑋 =  �0 1
1 0�   

𝑋⊗𝐻 =
1
√2

 �0 ⊗𝐻 1⊗𝐻
1 ⊗𝐻 0⊗𝐻� 

=
1
√2

 �
02 𝐻
𝐻 02

�  

=
1
√2

 �
0 0
0 0

1 1
1 −1

1 1
1 −1

0 0
0 0

� 

 

Also the Kronecker's product should be used when the 
other line doesn't have an operation, to expand the 
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matrix of the operation, so as to be applied to the larger 
vector of the state of the larger circuit. (To avoid affecting 
the state of the other lines, must be used the Kronecker's 
product against the identity matrix.) 

Another way to apply an operation to more lines is to be 
controlled. 

Control matrix 

Controlled operations are operations conditioned to only 
occur if a certain control line is ON. In the diagrams the 
control line is displayed by covering it with a small black 
circle and connecting it to the other operation with a 
straight line: 

──•── 
  │ 
──X── 
 

Sometimes when creating quick ASCII diagrams of 
circuits is omitted the connecting line. A side effect of this 
is that the control appears as an independent operation: 

──•── 
──X── 
 

When someone looks to the upper diagram, his first 
thought is "What is the matrix for this strange operation 
•?" 

Of course, there is no matrix for •, since the controls are 
not operations. The controls are operation modifiers. The 
attempt to compute the matrix for a controlled operation 
by calculating X⊗ • is a simply a type error. Even it is 
not completely wrong... 

What would happen if the rules of the arithmetics are 
changed a little bit, so there is no matrix for the so-called 
"gate •"?  

The programming technique which is used includes 
introducing a special value called µ. In the code µ is only 
an instance of the Complex class. There is a real part 1 
and imaginary part 0. In this way it acts as a normal 1 
anywhere. This is the case with the exception of the code 
for the Kronecker's product, which is an exceptional case: 

def q_kronecker_product(m1, m2): 
    w1, h1 = len(m1), len(m1[0]) 
    w2, h2 = len(m2), len(m2[0]) 

    return [[ 
        q_controlled_product(m1[i1][j1], m2[i2][j2], i1, i2, j1, 
j2) 
        for i1 in range(w1), i2 in range(w2)] 
        for j1 in range(h1), j2 in range(h2)] 
 
def q_controlled_product(v1, v2, i1, i2, j1, j2): 
    if v1 is Q_SPECIAL_CONTROL_ONE: 
        return Q_SPECIAL_CONTROL_ONE if i2==j2 else 0 
    if v2 is Q_SPECIAL_CONTROL_ONE: 
        return Q_SPECIAL_CONTROL_ONE if i1==j1 else 0 
    return v1*v2 
 

In practice the upper code is saying: when one matrix is 
put into another, each nested matrix, which gets paired 
with μ, is replaced with a matrix with μ along the 
diagonal. In other words, μ⊗U is defined to be different 
from μ⋅U. Instead of μ⊗U=μ⋅U is available μ⊗U=μ⋅I. For 
example,  

𝑋⊗𝜇 =
1
√2

 �𝜇 0
0 𝜇� 

If the new value μ is given, it is easy to be made a "gate 

•". When the input line is OFF, the operations are 

replaced by the identity matrix, so that it can be scaled 

with Kronecker by μ. When the input line is ON, the 

operations are applied, so that it can be scaled with 

Kronecker by 1. Thus the matrix of the control gate is 

defined to be: 

 𝐶 =  �𝜇 0
0 1� 

The introducing of μ and С is a useful programming 
technique, because going around the Kronecker's product 
is comparatively little resource intensive compared with 
adding logic for marking and generating controlled 
operations. 

Marked numbers 

We can do more things with this value μ. It can be added, 
multiplied, squared, etc. 
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A lot of interesting numerical systems begin by 
introducing a new value, with special rules related to 
squaring.  If a value i is entered, whose square is -1, the 
complex numbers are obtained. The complex numbers 
are useful for working with rotational quantities in 2d. If, 
instead of this is entered a value ϵ, whose square is 0, are 
obtained the double numbers. The double numbers make 
the numerical differentiation very easy, because 𝑓(𝑥 +
ϵ)− 𝑓(𝑥) =  ϵ d

dx
𝑓(𝑥). If a value j is entered, whose square 

is +1, are obtained the hyperbolic numbers. The 
hyperbolic numbers behave as the time and space in a 
special relativity. 

So the squaring looks good, when a behavior should be 
defined. In the case of μ the semantics, which is looked 
for, is an approximate restriction in a certain 
approximation. µ can be used as a marker, by means of 
which after multiplication it can be said what was was 
controlled and what was not. Taking this into account is 
defined 𝝁𝟐 to be again μ. 

For now there is no standard name for a numeric system, 
created by adding μ, such that 𝝁𝟐 =  𝛍. The lack of name 
may be due to the fact that it is a basis change different 
from isomorphic to hyperbolic numbers. In this article 
these numbers will be called Marked numbers, since μ  
changes the values in a way that can not be canceled. 

Each time when a numeric system is defined, the first 
thing to examine is how the typical operations behave. Is 
the multiplication commutative? Or associative? Does 
dividing have borderline cases in which it can not be 
divided? Do functions like 𝒆𝒙 make something new? 

For example, let's look at the raising of the marked 
number 𝑎 + 𝑏µ to the power n. 

First (𝑎 + 𝑏𝜇)𝑛 is expanded with the aid of the binomial 
theorem: 

= ��𝑛𝑖 �
𝑛

𝑖=0

𝑎𝑖(𝑏𝜇)𝑛−1 

Now let's subtract the only member that does not receive 
coefficient μ: 

= 𝑎𝑛 + 𝜇��𝑛𝑖 �
𝑛−1

𝑖=0

𝑎𝑖𝑏𝑛−1 

And then fill the hole in the sum: 

= 𝑎𝑛 + �−𝑎𝑛 +��𝑛𝑖 �
𝑛

𝑖=0

𝑎𝑖𝑏𝑛−1�𝜇 

After eliminating the application of the binomial theorem 
is obtained the answer: 

(𝑎 + 𝑏𝜇)𝑛 =  𝑎𝑛 + (𝑎 + 𝑏)𝑛𝜇 − 𝑎𝑛𝜇 

Another good operation for testing is the exponential 
function. A definition of 𝒆𝒙 is selected, usually the Taylor 

series 𝒆𝒙 = ∑ 𝒙𝒏

𝒏!
∞
𝒏=𝟎  works very well, and is seen what 

happens after applying the definition to 𝒆𝑎+𝑏𝜇  

The same thing, which makes Euler, to show that 
𝒆𝜋𝑖 =  −𝟏 𝒆𝑎+𝑏𝜇 is revealed in:  

= �
(𝑎 + 𝑏𝜇)𝑛

𝒏!

∞

𝒏=𝟎

 

The numerator of the addendums can be simplified by 
using the raised to n-th power equivalence: 

= �
𝑎𝑛 + (𝑎 + 𝑏)𝑛𝜇 − 𝑎𝑛𝜇

𝒏!

∞

𝒏=𝟎

 

Now that there are additions (and subtractions) in the 
infinite sum, it may be broken up into three infinite sums. 
This is not always a safe step (caution should be taken for 
conditionally convergent series): 

= ∑ 𝒂𝒏

𝒏!
∞
𝒏=𝟎 + 𝜇∑ (𝑎+𝑏)𝑛

𝒏!
∞
𝒏=𝟎 − 𝜇 ∑ 𝒂𝒏

𝒏!
∞
𝒏=𝟎   

Each of the sums matches the definition of the series of 
𝒆𝒙. After the sums are replenished back in the form of 𝒆𝒙, 
is obtained a good solution: 

𝒆𝑎+𝑏𝜇 =  𝒆𝑎 + ( 𝒆𝑎+𝑏 −  𝒆𝑎)𝜇 

It should be noted that the exponentiating and raising to 
a power are influenced in similar ways when they are 
generalized to work on Marked numbers. In both cases is 
obtained  

𝑓(𝑎 + 𝑏𝜇) = 𝑓(𝑎) + (𝑓(𝑏)− 𝑓(𝑎))𝜇  

That's not a coincidence. 

Let's take into account the matrices  𝐼 =  �1 0
0 1�  and  

𝑀 =  �0 0
0 1�. It must be noted that 𝐼 ∙ 𝑀 = 𝑀 and 𝑀 ∙ 𝑀 =

𝑀, just like 1 ∙ 𝜇 = 𝜇  и  𝜇 ∙ 𝜇 = 𝜇. The adding, scaling, and 
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multiplication of I and M also behave isomorphically 
relative to their behavior for 1 and μ. This means that I 
and М, and their linear combinations may be used to 
represent Marked numbers.  

The number 𝑎 + 𝑏𝜇 can be translated into the matrix 

�𝑎 0
0 𝑎 + 𝑏�, after which to be translated facts for such 

type of matrix back to facts for Marked numbers.  

The eigenvalues of the matrix  �𝑎 0
0 𝑎 + 𝑏�  are just a and a 

+ b. A good rule of thumb for applying functions to a 
matrix is to decompose the matrix into its 
eigenvalues/vector parts, to transform its eigenvalues 
with the function in question, and then to assemble the 
matrix again. Therefore 𝑓(𝑎 + 𝜇𝑏)  ends up from the 
point of 𝑓(𝑎) and 𝑓(𝑎 + 𝑏) because a and a + b are the 
eigenvalues, which are transformed. The backing up of 
the μ part, the new b, requires subtracting off the added 
part a. From there the pattern 

𝑓(𝑎 + 𝜇𝑏) = 𝑓(𝑎) + 𝜇(𝑓(𝑎 + 𝑏)− 𝑓(𝑎)). 

With this ends the tangent to the main abstract algebra. 
Let's again examine the operations on circuits. 

 

Merging operations into controls 

When there is a circuit such as this: 

──H─X─H── 
    │ 
──H─•─H── 
 

The Hadamard gates on the top line definitely can not be 
merged into a NOT gate. This would mean that they are 
controlled by the bottom line, which changes the 
behavior of the circuit. But what would happen if the 
bottom Hadamard gates are multiplied in the control? 
Then it would be obtained: 

𝐻 ∙ 𝐶 ∙ 𝐻 

=
1
2 �

1 1
1 −1� ∙ �

𝜇 0
0 1� ∙  �

1 1
1 −1� 

=
1
2 �

1 ∙ 𝜇 + 1 ∙ 0 1 ∙ 0 + 1 ∙ 1
1 ∙ 𝜇 − 1 ∙ 0 1 ∙ 0 − 1 ∙ 1� ∙  �

1 1
1 −1� 

=
1
2 �
𝜇 1
𝜇 −1� ∙  �

1 1
1 −1� 

=
1
2 �
𝜇 + 1 𝜇 − 1
𝜇 − 1 𝜇 + 1� 

Let's now have a "strange control" with Marked numbers 
for all of its entries. What would happen if the strange 
control is combined with X, using the Kronecker's 
product with a special µ case? 

𝑋⨂(𝐻 ∙ 𝐶 ∙ 𝐻) 

Let's first outline the familiar solution in the matrix of the 
X gate: 

=
1
2 �

0⨂�𝜇 + 1 𝜇 − 1
𝜇 − 1 𝜇 + 1� 1⨂�𝜇 + 1 𝜇 − 1

𝜇 − 1 𝜇 + 1�

1⨂�𝜇 + 1 𝜇 − 1
𝜇 − 1 𝜇 + 1� 0⨂�𝜇 + 1 𝜇 − 1

𝜇 − 1 𝜇 + 1�
� 

The alignment of the upper expression into a single 
matrix is a little complicated. μ are on the right side this 
time, so the diagonal, where μ must be placed, is more 
difficult to be seen. Mainly all μ in the top-left and 
bottom-right sections remain μ, while μ in the top-right 
and bottom-left are replaced with 0. It is also confusing, 
that 1 are added/subtracted from μ, using the normal 
rules for Kronecker's product instead of the special case 
for following the diagonal: 

=
1
2 �

𝜇 𝜇
𝜇 𝜇

1 −1
−1 1

1 −1
−1 1

𝜇 𝜇
𝜇 𝜇

� 

 Since it is not necessary to track what is controlled, μ 
may be eliminated by applying the function: 
𝑐𝑙𝑒𝑎𝑛𝑖𝑛𝑔(𝑎 + 𝜇𝑏) = 𝑎 + 𝑏  

=
1
2 �

1 1
1 1

1 −1
−1 1

1 −1
−1 1

1 1
1 1

� 

The circuit looks like this: 

 

In order to obtain the matrix for the entire circuit, must 
be multiplied the last two Hadamard gates: 

(𝐻⨂𝐻) ∙ (𝑋⨂𝐶) ∙ (𝐻⨂𝐻) 

= (𝐻⨂𝐼) ∙ (𝑋⨂(𝐻 ∙ 𝐶 ∙ 𝐻)) ∙ (𝐻⨂𝐼) 
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=
1
2 �

1 0
0 1

1 0
0 1

1 0
0 1

−1 0
0 −1

� ∙
1
2 �

1 1
1 1

1 −1
−1 1

1 −1
−1 1

1 1
1 1

�

∙
1
2 �

1 0
0 1

1 0
0 1

1 0
0 1

−1 0
0 −1

� 

Which is equivalent to: 

= �
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

� 

What is the circuit: 

 

In other words: The surrounding of a controlled NOT 
with operations of Hadamard from all sides will swap on 
which line are the control and the NOT. This is actually a 
well-known programming technique, but the fact that the 
computing is correct, shows that the merging of 
operations into controls is safe. It was shown that 
(𝐶⨂𝑈) ∙ (𝑉⨂𝐼) =  (𝐶 ∙ 𝑉)⨂𝑈 (and this is preserved, when 
all ⨂ members and/or all ⋅ members are reversed).  

For the merging of operations into controls can be 
thought as a modification of the controls for applying in 
a different basis. For example, since the Hadamard gate 
swaps between the bases Х and Z, the merging into a 
Hadamard operation on each side of the control causes 
the control to be applied to X observable instead to Z 
observable (the Z observable is the usual computing 
base). 

Multiple controls 

Do things continue to work when there are multiple 
controls? Let's examine a Toffoli gate: 

 

First the controls are combined with each other: 

𝐶⨂𝐶  

= 𝐶⨂2 

= �
𝜇⨂ �𝜇 0

0 1� 0⨂�𝜇 0
0 1�

0⨂�𝜇 0
0 1� 𝜇⨂ �𝜇 0

0 1�
� 

= �

𝜇 0
0 𝜇

0 0
0 0

0 0
0 0

𝜇 0
0 1

� 

 

It should be noted that the entire diagonal is built from μ, 
with the exception of the bottom-right value (1). This 
pattern continues for all Kronecker powers 𝐶⨂𝑛 
of C. (The resulting matrix can be set briefly in a bracket 
notation:  

𝐶⨂𝑛 = 𝜇𝐼2𝑛 + (1− 𝜇) |2𝑛 − 1⟩ ⟨2𝑛 − 1| 

Let's calculate the matrix of a Toffoli gate: 

𝐶⨂𝑛⨂𝑋 

= �

𝜇 0
0 𝜇

0 0
0 0

0 0
0 0

𝜇 0
0 1

�⨂𝑋 

= �

𝜇⨂𝑋 0
0 𝜇⨂𝑋

0 0
0 0

0 0
0 0

𝜇⨂𝑋 0
0 1⨂𝑋

� 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜇 0
0 𝜇

0 0
0 0

0 0
0 0

𝜇 0
0 𝜇

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

𝜇 0
0 𝜇

0 0
0 0

0 0
0 0

0 1
1 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The above matrix is in fact the correct matrix for the 
Toffoli gate (or will be after applying cleaning), i.e. the 
things continue to work when there are multiple controls. 
Let's now attempt to merge larger operations into larger 
controls. 

Merging multiple operations into multiple controls 
multiple times 

A frequent task in the computing is the incrementation. 
Fortunately the circuits that increment, are quite simple 
for obtaining from controlled NOTs. Here is one that 
increments three bits: 
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The pattern continues just as it is expected. In order to 
carry out an incrementation on more bits, simply are 
added slightly larger controlled-NOTs in front. 

This particular pattern of gates used for incrementation 
from controlled NOTs, is particularly interesting, since 
each operation has controls on all the lines, affected by 
the smaller operations. From here, it follows that these 
smaller operations can be merged into the controls and to 
simplify 

(𝐼⨂𝐼⨂𝑋) ∙ (𝐼⨂𝑋⨂𝐶) ∙ (𝑋⨂𝐶⨂𝐶) to use fewer large 
matrix multiplications. 

First it must be noticed that the Kronecker's product is 
distributed over the matrix multiplication. This allows to 
be simplified the sub-expression (𝐼⨂𝐼⨂𝑋) ∙ (𝐼⨂𝑋⨂𝐶)  in 
𝐼⨂�(𝐼⨂𝑋) ∙ (𝑋⨂𝐶)�. Also it may be suggested that 
(𝐼⨂𝑋) ∙ (𝑋⨂𝐶) is simplified in 𝑋⨂(𝑋 ∙ 𝐶)  

Let's calculate this simplified sub-expression: 

𝑋⨂(𝑋 ∙ 𝐶) 

= 𝑋⨂�0 1
𝜇 0� 

= �
0⨂�0 1

𝜇 0� 1⨂�0 1
𝜇 0�

1⨂�0 1
𝜇 0� 0⨂�0 1

𝜇 0�
� 

= �

0 0
𝜇 0

0 1
0 0

0 1
0 0

0 0
𝜇 0

� 

In the above matrix, the output (the row with non-zero 
entry) is always one more than the input column. This is 
a matrix for incrementing 2 bits. 

Knowing the 2-bit case, it can be calculated the case with 
2 bits from the start: 
(𝐼⨂𝐼⨂𝑋) ∙ (𝐼⨂𝑋⨂𝐶) ∙ (𝑋⨂𝐶⨂𝐶) 
 
The distributed I is subtracted: 
= (𝐼⨂ ((𝐼⨂𝑋) ∙ (𝑋⨂𝐶))) ∙ (𝑋⨂𝐶⨂2) 
 

X is subtracted by merging the operations in the 
mentioned X controls: 
= 𝑋⨂ ((𝐼⨂𝑋 ∙ (𝑋⨂𝐶))) ∙ 𝐶⨂2) 
 
The inner X by merging the operations in the mentioned 
X controls: 
= 𝑋⨂ ((𝑋⨂(𝑋 ∙ 𝐶))) ∙ 𝐶⨂2) 
 
The 2-bit increment gate is expanded: 

= 𝑋⨂�

0 0
𝜇 0

0 1
0 0

0 1
0 0

0 0
𝜇 0

� ∙ 𝐶⨂2 

The matrix multiplication is calculated: 

= 𝑋⨂�

0 0
𝜇 0

0 1
0 0

0 𝜇
0 0

0 0
𝜇 0

� 

 
The Kronecker's product is calculated: 
 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0
𝜇 0

0 0
0 0

0 𝜇
0 0

0 0
𝜇 0

0 0
0 0

0 1
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 1
0 0

0 0
0 0

0 0
0 0

0 0
𝜇 0

0 0
0 0

0 𝜇
0 0

0 0
𝜇 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

And with this, the process ends. 
 
If thinking more abstractly, the original construction for 
the matrix was to be made a triangle of controlled NOT 
operators. More specifically:  
𝐼𝑛𝑐(𝑛) =  ∏ (𝐼⨂𝑖−1  ⨂𝑋⨂𝐶⨂𝑖−1)𝑛

𝑖=1   
  
The goal of the new construction is to make a smaller 
increment but merged into a new controlled NOT gate. 
More specifically:  𝐼𝑛𝑐(𝑛) =  𝑋⨂(𝐼𝑛𝑐(𝑛 − 1) ∙ 𝐶⨂𝑖−1) . 
 
The reason this to work comes down to μ. First, the 
smaller increment gate is multiplied by the controls This 
causes all non-zero elements to become μ, but leaves 1 
only in the top-right corner. After this the Kronecker's 

product expands all those µ into �𝜇 0
0 𝜇�, by duplicating  

them in the top-left and bottom-right quadrants of the 
new larger increment matrix. The only breakthrough in 
the new diagonal is the top-right corner of the bottom-
left quadrant, but it is filled from the top-right 1, being 
expanded into �0 1

1 0�. This is how a correct increment 
matrix is achieved from a smaller increment. 
 
The benefit of this strategy for the computing is in the 
size of the multiplications. Initially, fondly, were 
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performed n – 1 matrix multiplications of size 2𝐧 × 2𝐧. By 
performing the most multiplications in a less recursive 
step, instead of this is done one 2 x 2 dot matrix 
multiplication, one 4 x 4 dot matrix multiplication, one 8 
x 8 dot matrix multiplication and so on until 2𝐧 × 2𝐧. This 
is a factor for speeding up the runtime for performing n 
compared to the naive strategy. This speeding up can be 
achieved even automatically by introducing a 
optimization of type "merging operations into controls 
when possible". 
 
Applicability of the time optimization 
 
Let's examine the time optimization, achieved by 
merging operations into controls. A better way to achieve 
this optimization would be simply to recognize that an 
operation with m controls affects at most 2𝐧−𝐦 
amplitudes. By taking only this subset of amplitudes is 
achieved the same speedup in a much simpler way.   
 
In addition, if the focus is on optimization, matrix 
multiplications for X gates should not be used. For 
example, incrementing is just an operation rotation of an 
array by 1. At a circular array the time is constant! 
Another problem is that the optimizations due to µ will 
be combined difficultly with other optimizations, because 
µ violates certain mathematical identities. For example, it 
is no longer the case that  
(𝑋⨂𝑌) ∙ (𝑍⨂𝑇) = (𝑋 ∙ 𝑍)⨂(𝑌 ∙ 𝑇) 
  
Each optimization that implicitly relies on it for 
correctness, will have to check for μ and С before that. 
Whether or not it's useful, µ is definitely interesting for 
experimentation. 
 

3. SUMMARY 
 
By introducing a special value μ, which the Kronecker's 
product uses in special cases, the concept of using a line 
as a control for that operation can be turned into an 
operation. 
 
µ is a neat way to determine controlled operations, but in 
the end, it is not very practical, because it violates some 
useful mathematical identities. 
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